K-nearest Neighbors for Apache Flink

Dan Blazevski from Insight Data Science presents some recent progress on Apache Flink's machine learning library, focusing on a new implementation of the k-nearest neighbors (knn) algorithm for Flink.

In the spirit of the Kappa Architecture, Apache Flink is a distributed batch and stream processing tool that treats batch as a special case of stream processing. Dan discusses a few ways, both exact and approximate, to do distributed knn queries, focusing on using quadtrees to spatially partition the training set and using z-value based hashing to reduce dimensionality.