Machine Learning with Large Networks of People and Places

In this talk given at the Prince Building Tech Talks Series, Blake Shaw, a data scientist at Foursquare, discusses the role of data science in Foursquare's planned location recommendation service.

Foursquare is now aware of over 1.5 billion check-ins from 15 million people at 30 million different places all over the world.  Each check-in can be thought of as an edge in a vast network connecting people to each other and to the places that they care about most.

Graph-based machine learning algorithms are critical not only for making sense of these networks that emerge out of patterns of human mobility but also for creating useful data-driven products that help people better navigate the real world.

In his talk, Blake examines two networks that he has observed at foursquare, the social graph and the place graph, and then discuss various machine learning and big data techniques for better understanding these networks as well as using them to build a novel recommendation engine called 'Explore.'

Full transcript of the talk can be found here

Want to hear from more top engineers?

Our weekly email contains the best software development content and interviews with top CTOs. Enter your email address now to stay in the loop.